동향
동향 내용
A simple separation method for downstream biochemical analysis of aquatic microbes.
분류 C-14 조회 1341
발행년도 2015 등록일 2015-06-23
출처 J Microbiol Methods (바로가기)
In order to study the chemical composition of aquatic microbes it is necessary to obtain completely separated fractions of subpopulations. Size separation by filtration is usually unsuccessful because the smaller group of organisms contaminates the larger fractions due to being trapped on filter surfaces of nominally much larger pore sizes. Here we demonstrate that a simple sucrose density separation method allowed us to separate microorganisms of even subtle size differences and to determine their bulk biochemical composition (proteins, polysaccharides+nucleic acids, and lipids). Both autotrophs and heterotrophs (through anaplerotic pathways) were labeled with (14)C-bicarbonate for biochemical fractionation. We provided proof of concept that eukaryotic microbes could be cleanly separated from prokaryotes in cultures and in field samples, enabling detection of differences in their biochemical makeup. We explored methodological issues regarding separation mechanisms, fixation, and pre-concentration via tangential flow filtration of oligotrophic marine waters where abundances of microorganisms are comparably low. By selecting an appropriate centrifugal force, two processes (i.e., isopycnal and rate-zonal separation) can be exploited simultaneously resulting in finely-separated density fractions, which also resulted in size separation. Future applications of this method include exploration of the stoichiometric, biochemical and genetic differences among subpopulations of microbes in a wide variety of aquatic environments.
 
<후략>

목록



[추천 메일 발송]
추천 메일 발송
받는 분 이메일 @
추천인
리스트 이전글과 다음글
이전글이전글 Biobased carbon content of resin extracted from polyethylene composite by carbon-14 concentration measurements using accelerator mass spectrometry.
다음글다음글 Modulation of Intercellular Junctions by Cyclic-ADT Peptides as a Method to Reversibly Increase Blood-Brain Barrier Permeability.